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SUMMARY 

An invest igat ion has been made t o  determine the e f f e c t  of an i n s t a l -  
l a t ion  of four nacelles - two underwing and two overwing - on the aerody- 
namic charac ter i s t ics  of a cambered and twisted wing with a leading-edge 
sweep of 80'. The aspect r a t i o  of the wing was 1.085, taper  r a t i o  of 0, 
and a notch r a t i o  of 0.65. 
was u t i l i zed  about the cambered and twisted wing chord plane. 

A 2.5-percent biconvex thickness d i s t r ibu t ion  

The invest igat ion w a s  made with t r ans i t ion  f ixed on the wing sur- 
a faces.  The Reynolds numbers based on the mean aerodynamic chord were 

4.5 x 106. 

Y 

INTRODUCTION 

I n  recent years there has been much e f f o r t  devoted t o  the development 
of airplane configurations having long-range capabi l i t ies  a t  supersonic 
speeds. Among the configurations investigated were those which a re  
essent ia l ly  a l l  wing. 
t o  obtain the optimum load d is t r ibut ion  which l inea r  theory indicates  w i l l  
r e s u l t  i n  subs tant ia l  gains i n  l i f t - d rag  r a t i o .  Results of these inves t i -  
gations are  reported i n  references 1 t o  3 .  Since it is  probable t h a t  some 
arrangement of nacelles w i l l  be required t o  house the engines of an ac tua l  
a i r c r a f t ,  two possible combinations of underwing nacelles w e r e  included on 
the model configuration tes ted  i n  reference 2. This configuration was 

smaller airplane, i t  might not be possible t o  locate a l l  engines below the 

Camber and t w i s t  were incorporated i n  these wings 

'Q sized t o  represent a large,  long-range bomber. On a model representing a 

** * 
Ti t l e ,  Unclassified. 



wing due t o  the increased s i ze  of the engine nacelles relative t o  the 
w i n g .  
is  a poss ib i l i t y .  

For such an airplane, an overwing locat ion of some of the nacelles 

** 
The present investigation i s  intended t o  provide an indication of 

the e f f e c t  of large nacelles (located above and below the wing) on the 
aerodynamic charac ter i s t ics  of a cambered and twisted wing having l i f t -  
drag r a t i o s  of the l eve l  required of long-range supersonic a i r c r a f t .  

SYMBOLS L 
6 
8 
5 The longitudinal charac ter i s t ics  of the model a re  re fer red  t o  the 

s t a b i l i t y  system of axes. The l a t e r a l  charac ter i s t ics  of the model a re  
re fer red  t o  the body system of axes. 
posi t ive d i rec t ion  of forces,  moments, and angles a re  shown i n  f igure 1. 

The systems of axes used and the 

The moments of the model are presented about the 0.617-chord point 
of the mean aerodynamic chord and on the model reference l ine .  

Symbols used i n  t h i s  paper a re  defined as follows: 

b 

- 
C 

%,b 

'6, i 

CL 

c2 

Cn 

CY 

w i n g  span, 17.63 i n .  

wing mean aerodynamic chord, 21.67 i n .  

Total drag external  drag coeff icient ,  %,b - %,i 
qs 

base drag coeff icient ,  Base drag 
(2s 

in t e rna l  drag coeff icient ,  In terna l  drag 
qs 

l i f t  coeff icient ,  L i f t  - 
qs 

pitching-moment coeff icient ,  Pitching moment 
qse 

Rolling moment -0lling-moment coeff icient ,  
qSb 

Yawing moment yawing-moment coeff icient ,  
qSb 

side-f orce coeff icient ,  Side Orce 
qs 
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6r ac, l i f t- curve slope (a fi: O'), - per deg cLa aa 

c z P  as 

cnP a p  

'U 

acz ef fec t ive  dihedral parameter ( p  sz O o ) ,  - per  deg 

d i rec t ional  s t a b i l i t y  parameter ( p  fi: O o ) ,  - per deg 

per deg - &Y side-force parameter ( p  = oO), cyP 

- %I pitching-moment curve slope (CL % O o )  
acL 

ac6 CIS - C5,min - drag-due- to-lift fac tor ,  
acL2 CL2 fo r  ommax 
L/D l i f t - d rag  r a t i o ,  CL/CD 

M free-stream Mach number 

R Reynolds number 

S theore t ica l  wing area, 1.99 sq f t  

9 

or 

free-stream dynamic pressure, lb/sq f t  

a angle of a t tack refer red  t o  a reference l ine ,  deg 

P 

Subscripts : 

angle of s ides l ip  re fer red  t o  model plane of symmetry, deg 

W X  maximum 

min minimum 

MODEL AND APPARATUS 

The t e s t s  were conducted i n  the high Mach number t e s t  sect ion of 
the Langley Unitary Plan wind tunnel. 
continuous-flow type. 

The tunnel i s  a variable-pressure 
The test section is  4 f e e t  square and approximately 



7 f e e t  i n  length. The nozzle leading t o  the test  section i s  of the 
asymmetric sliding-block type. 
through a Mach range from approximately 2.29 t o  4.65 without tunnel 
shutdown. ' 

a 

Mach numbers may be varied continuously 

6J 

A drawing of the model is  presented i n  f igure 2 and de ta i l s  of the 
nacelles a re  presented i n  f igure  3 .  Geometric charac ter i s t ics  of the 
rnodel a re  given i n  tab le  I. Ordinates for the surfaces of the cambered 
and twisted wing are contained i n  reference 3 .  Photographs showing the 
wing with and without nacelles are presented i n  f igures  4 and 5, 
respectively.  

The wing consisted of a 25-percent-thick biconvex a i r f o i l  section 
d is t r ibuted  about the cambered and twisted chordplane. 
f a i r i n g  was placed on the upper surface of the wing t o  house the force 
and moment sensing balance. The cross sect ion of the balance f a i r i n g  
represents the minimum area obtainable t o  adequately house the balance. 
In  order t o  es tab l i sh  a relat ionship between the s ize  of the wing and 
the nacelles,  a proposed airplane design, s imilar  i n  configuration t o  
the t e s t  model, was used t o  e s t ab l i sh  a prototype s ize  and a corre-  
sponding scale of the test  model. 
i n  s i ze  and location from the selected prototype nacelle i n s t a l l a t i o n  
enclosing engines of the proposed airplane design. The model nacelles 
a re  i l l u s t r a t e d  i n  f igure  3. 

A balance 

The model nacelles were scaled, both 

The nacelle i n s t a l l a t i o n  consisted of four  nacelles.  One pa i r  of 
nacelles was located below the wing, one on each s ide of the balance 
f a i r ing ,  and one pa i r  above the wing a t  the same spanwise locat ion a s  
the underwing ins t a l l a t ions .  The pylons supporting the nacelles were 
skewed r e l a t i v e  t o  the plane of symmetry i n  an attempt t o  obtain al ine-  
men% with flow over the wing surface. 

Forces and moments fo r  the complete model were measured by means of 
a six-component e l e c t r i c a l  strain-gage balance. The balance w a s  attached 
by means of a s t i n g  t o  the tunnel cent ra l  support system. The moments 
were measured a t  a point located a t  the 61.7 percent of the wing mean 
aerodynamic chord and on the model reference l ine .  

L 
6 
8 
5 

An addi t ional  component of the model support system w a s  a remotely 
operated adjustable coupling which permitted tests t o  be performed a t  
variable s ides l ip  angles concurrently with variable angles of a t tack .  
This coupling w a s  placed between the model s t i n g  and the tunnel cent ra l  
support system. 
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TESTS 

The tests were conducted a t  the  conditions indicated i n  the fo l-  
lowing table  : 

. . . . . . . . . . . . . . . . . . .  Mach number 2.29 2.98 

Reynolds number (based on E )  . . . . . . . . . .  4.5 X lo6 4.5 X lo6 

Stagnation pressure, lb/sq i n .  abs . . . . . . .  13.2 1-9 .o 

Dynamic pressure, lb/sq f t  566 478 . . . . . . . . . . .  
. . . . . . . . . . .  Stagnation temperature, O F  150 150 

The dewpoint f o r  a l l  tests w a s  maintained a t  less than -30' F. 
angle-of-attack range w a s  - 7 O  t o  11'. 

The 

Transition w a s  fixed f o r  a l l  tests. The t rans i t ion  s t r i p s  con- 
s i s t ed  of  bands of sand 1/32 inch wide applied a t  10 percent of the  
l oca l  streamwise chord on the  wing upper and lower surface with a den- 
s i t y  of about 100 grains per square inch. 
0.011 inch t o  0.013 inch. 

The grain  height w a s  

To indicate  flow conditions on the upper surface of the wing, a 
f luorescent o i l  w a s  applied t o  the surface. The flow conditions i n  the  

on the  wing surface. 
was photographed and the composite f igure  of these results i s  presented 
i n  f igure  6. A more complete description of t h i s  technique i s  given i n  
reference 4. 

c boundary layer  produce distinguishing areas of fluorescent o i l  density 
The wing surface, illuminated by u l t rav io le t  l i gh t ,  

v 

CORRECTIONS AND ACCURACY 

A cal ibra t ion of the flow angulari ty i n  the  tes t  section has shown 
that there i s  a s m a l l  upflow. 
mined by upright and inverted runs of the model a t  both Mach numbers. 
The results presented herein have been corrected f o r  t h i s  flow misaline- 
ment. The maximum deviation of l oca l  Mach number f o r  the port ion of the 
tes t  section occupied by the  model w a s  iO.Ol5 from the average values 
l i s  tea. 

The degree of flow misalinement w a s  deter-  

w 

Pressure measurements w e r e  made i n  the balance cavity and on the base 
of an upper and lower nacelle over the test  angle-of-attack and Mach num- 
ber ranges. The base pressures and the cavity pressure have been used t o  'ra 
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u adjust  the l eve l  of the drag coeff icients  presented herein t o  a condition 
representing free-stream s t a t i c  pressure a t  the model and nacelle base 
areas.  

+? 

The in te rna l  duct losses  f o r  flow through the nacelles were deter-  
mined by measurement of s t a t i c  and t o t a l  pressures near the nacelle e x i t .  
Once determined, these losses  were used t o  compute the in t e rna l  drag 
coeff ic ien ts .  
model drag coeff icients  presented herein. 
and the in t e rna l  drag coeff icients  are presented i n  f igure 7. 

The in t e rna l  drag coeff icients  have been removed from the 
The base drag coeff icients  

L 
6 
8 
5 

The base-pressure adjustment f o r  the plugged nacelle configuration 
represents se,;arate measurements applied t o  the en t i r e  base of the nacelle 
including w h a t  normally would be the e x i t .  Because of the asymmetric 
location of the plugged nacelle with respect t o  the balance center,  t h i s  
Sase-pressure adjustment w a s  a l so  used t o  correct  the moments affected by 
vir tue of plugging the nacel le .  

The estimated accuracy of the force and moment coeff icients  and 
angles based on cal ibrat ion and repea tabi l i ty  of data i s  

CL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  to.002 
c;, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  to.0005 

cm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  to.0005 
c2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  fO.OOO1 
C n . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .+O.OOOl c 

c y .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  +0.0001 

a, deg fO.l w . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
B ,  deg . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  fO.l 

PRESENTATION OF RESULTS 

The r e s u l t s  of t h i s  investigation are  presented i n  the following 
f igures  : 

Figure 

. . . . . . . . . . . . . . .  Base and in t e rna l  d r a g  coeff icients  7 
Schlieren photographs . . . . . . . . . . . . . . . . . . . . . .  8 
Longitudinal s t a b i l i t y  charac ter i s t ics  9 
Summary of longitudinal s t a b i l i t y  charac ter i s t ics  . . . . . . .  10 
Lateral  s t a b i l i t y  charac ter i s t ics  . . . . . . . . . . . . . . . .  11 
Lateral s t a b i l i t y  parameters . . . . . . . . . . . . . . . . . .  12 

. . . . . . . . . . . . .  

a6 
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DISCUSSION 

Longitudinal S t a b i l i t y  Characteristics 

The longitudinal s t a b i l i t y  charac ter i s t ics  of the model with and 
without nacelles a re  summarized i n  f igure 10. The re su l t s  show t h a t  the 
data obtained on the wing without nacelles i n  t h i s  investigation agree 
well with the r e su l t s  previously obtained ( r e f .  3) despite the s l i g h t l y  
differer.t  Reynolds numbers (R = 4.5 x lo6 f o r  the present investigation 
and R = 5.0 x 106 i n  r e f .  3 ) .  The only disagreement is  i n  the maximum 
l i f t - d rag  r a t i o  a t  a Mach number of 2.3 which i s  a t  present unexplainable 
and is considered insignif icant .  

The addition of four nacelles t o  the wing reduces the maximum l i f t -  
drag r a t i o  by about 3.3 a t  a Mach number of 2.98. 
due t o  the increase i n  minimum drag produced by the nacelles (xD,,in 
due t o  nacelles of about 0.0170 a t  a Mach number of 2.98). Undoubtedly, 
t h i s  large increase i n  minimum drag c o d a  be decreased by decreasing the 
l i p  angle of the external  compression i n l e t  or going t o  an in t e rna l  com- 
pression i n l e t  design. 

This loss i s  primarily 

The drag due t o  l i f t  i s  unchanged a t  M = 2.29 and reduced a t  
M = 2.98 by the addition of the nacelles.  
large interference of the nacelles on the wing. Hence, the nacelles,  i n  
introducing a high l eve l  of wave drag, probably minimize the increase i n  
adverse boundary-layer growth associated with increasing l i f t  on the 
wing alone. The extent of the nacelle wave drag i s  i l l u s t r a t e d  by the 
schlieren photographs ( f ig .  8) . 
(CL = -0.1) a t  which the oil-flow photograph w a s  taken, it i s  believed 
t o  be i l l u s t r a t i v e  of the flow caused by the nacelle,  although the degree 
of i n l e t  compression wave interference i s  incorrect  as shown i n  the pic- 
ture .  The interference of the nacelle inlet compression waves with the 
wing surface i s  represented by the dark areas immediately below the 
nacelles on the o i l- f i lm photograph ( f i g .  6.) .  

This i s  probably due t o  the 

14 

Despite the erroneous l i f t  coeff icient  
-.+ 

The plugged nacelle configuration (upper l e f t )  , which represents a 
no-flow condition, fur ther  increases the minimum drag coeff icient  (0.0040 
a t  M = 2.98) due t o  the increased wave drag of the so l id  nacelle.  
should be noted here t h a t  drag coeff icients  presented f o r  the plugged 
nacelle, although having no in terna l  flow loss ,  have been adjusted t o  a 
leve l  of free-stream s t a t i c  pressure over the e n t i r e  base of the nacel le .  
(See section e n t i t l e d  "Corrections and Accuracies. ' I )  

It 

.rp 

The nacelles r e s u l t  i n  a s l i g h t  forward movement of the aerodynamic 
center a t  the lowest t e s t  Mach number (2.29) and no change a t  a Mach num- 
ber of 2.98. z Plugging the upper nacelle causes a 3-percent forward 



movement of the aerodynamic center a t  a Mach number of 2.29 and a barely 
detectable forward movement a t  a Mach number of 2.98. 

.B 

Lateral S t a b i l i t y  Characterist ics 

The l a t e r a l  s t a b i l i t y  character is t ics  obtained i n  the present 
investigation are shown a t  approximately zero angle of a t t ack  i n  f i g -  
ure 11 and the var ia t ion of the lateral  s t a b i l i t y  parameters with angle 
of a t tack i n  f igure  12. 
various angles of s ides l ip  ( f i g .  11) indicate that the lateral  s t a b i l i t y  
parameters ( f ig .  12) ,  obtained throughout the angle-of -attack range a t  
nominal angles of s ides l ip  of Oo and 5 O ,  are a good representation of 
these character is t ics  a t  smll angles of s ides l ip .  

"he l i n e a r i t y  of the r e su l t s  obtained a t  
L 
6 
8 
5 

The r e su l t s  indicate  t ha t  the primary e f f e c t  of the nacelle-pylon 
i n s t a l l a t i on  i s  t o  substant ia l ly  increase the di rect ional  s t a b i l i t y  of 
the wing due t o  the side area added by the nacelle i n s t a l l a t i on  a f t  of 
the balance moment center .  

The e f f ec t  of plugging one nacelle is t o  introduce an increment i n  
yawing-moment coeff ic ient  t h a t  would require a change i n  t r i m  of the 
configuration ( f i g .  11). 
s m a l l  i n  r e l a t i on  t o  the e f f ec t  of the l o s s  i n  t h ru s t  t ha t  such a con- 
d i t ion  would represent i n  the a i rplane.  

The change i n  yawing moment i s  considered 

I n  connection with the e f f ec t  of plugging one nacelle, it w i l l  be 
recal led t h a t  the base pressure of the nacelle has been adjusted t o  a 
l eve l  of free-stream s t a t i c  pressure. 
sent  engine-out f l i g h t  conditions wherein the  base pressure could assume 
any value. 

Such a condition does not repre- 

CONCLUDING REMARKS 

The r e su l t s  of the  investigation of the e f f ec t , o f  nacelles on the  
aerodynamic character is t ics  of an 800 swept cambered and twisted wing 
indicate that the  nacelles substant ia l ly  reduce the maximum l i f t - d rag  
r a t i o  of the wing (from 7.3 t o  4.0 a t  a Mach number of 2.98). 
reduction i n  m a x i m u m  l i f t- drag  r a t i o  i s  primarily the r e su l t  of increased 
minimum drag. 
reduce the drag penalty of the nacelles by reducing the wave drag and 
thus improve the l i f t- drag  r a t i o  of the wing-nacelle combination. 

This 

It is  apparent that a change i n  i n l e t  combination could 

The nacelle-pylon combination increased the di rect ional  s t a b i l i t y  
because of the rearward s ide  area added t o  the w i n g .  The primary e f f e c t  
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5 of plugging one nacelle, which represents a 
introduce a small and probably trimmable increment in yawing moment. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Field, Va., August 10, 1959. 
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TABI;E I.- GEOmTRIC CHARACmRISTICS OF THE MODEL 

Body : ' 
Length, i n .  . . . . . . . . . . . . . . . . . . . . . . . . .  
M a x i m u m  height, i n .  . . . . . . . . . . . . . . . . . . . . .  
Base  area, sq i n .  . . . . . . . . . . . . . . . . . . . . . .  
Maximum width, in .  . . . . . . . . . . . . . . . . . . . . .  

Wing: 
Area, s q f t  . . . . . . . . . . . .  
Span , in .  . . . . . . . . . . . . .  
Aspect r a t i o  . . . . . . . . . . . .  
Taper r a t i o  . . . . . . . . . . . .  
Sweepback of leading edge, deg . . .  
Sweepback of t r a i l i n g  edge, deg . . 
Total length i n  streamwise d i rec t ion  

wing apex t o  wing t i p ,  i n .  . . .  
Mean aerodynamic chord, i n .  . . . .  
Mean-aerodynamic-chord location, in .  

La tera l  locat ion . . . . . . . . .  
Longitudinal location from apex . 

Theoretical roo t  chord 
Total length of wing 

Notch r a t i o ,  

. . . . . . . . . . . . .  

. . . . . . . . . . . . .  . . . . . . . . . . . . .  . . . . . . . . . . . . .  . . . . . . . . . . . . .  . . . . . . . . . . . . .  

. . . . . . . . . . . . .  . . . . . . . . . . . . .  
- 
. . . . . . . . . . . . .  . . . . . . . . . . . . .  
. . . . . . . . . . . . .  

Nacelle : 
Length, i n .  . . . . . . . . . . . . . . . . . . . . . . . . .  
Maximum diameter, i n .  . . . . . . . . . . . . . . . . . . . .  
I n l e t  diameter, i n .  . . . . . . . . . . . . . . . . . . . . .  
Lip angle, deg . . . . . . . . . . . . . . . . . . . . . . . .  
Exi t  diameter, i n .  . . . . . . . . . . . . . . . . . . . . .  

Base  diameter, i n .  . . . . . . . . . . . . . . . . . . . . .  

33.86 
1.37 
1.89 
2.39 

1.99 
17.63 
1.08 
0 

80 .oo 
63.4 

50 .oo 
21.67 

2.94 
16.67 
o .65 

9.90 
2.10 
1.42 
1.40 
26 .o 
1-75 
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L-59-5051 
Figure 6.- Oil-film flow photograph of the twisted and cambered 80° 

swept arrow wing with nacelles.  
CL -0.10; M = 2.98. 

Transition fixed; R = 4.5 X lo6; 
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.004 

c b , b  

0 4 Nacel les  
0 Upper l e f t  n a c e l l e  

0 

Figure 7.- Variation of base drag coef f ic ien t  and in t e rna l  drag coef f i-  
c i en t  f o r  the twisted and cambered 80' swept arrow wing with and 
without nacelles.  



a = -4.8O 

a = -0.6O 

a = 5.7O 

A l l  nacelles open 

a = -4.8' 

a z -0.6O 

a = 5.8O 

Upper left nacelle plugged 

L-59 -5048 (a )  M = 2.29. 

Figure 8.- Schlieren photographs of twisted and cambered 800 swept arrow 
wing with nacelles. 
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a = -0.8O a = -0.40 

a = 5 . 5 O  

A l l  n a c e l l e s  open 

(b) M = 2.98. 

Figure 8.- Concluded. 

a = 5.6O 

Upper l e f t  n a c e l l e  plugged 

L-39-5049 
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(a) M = 2.29. 

Figure 9.- Effect of addition of nacelles and plugging of upper left 
nacelle on the longitudinal stability characteristics of a twisted 
and cambered 80° swept arrow wing. R = 4.5 x LO6; p = 0'. 
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Figure 9. - Concluded. 
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Figure 10.- Summary of the longitudinal stability characteristics of a 
twisted and cambered 80° swept arrow wing with nacelles. 
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* (a) M = 2.29. 

Figure 11.- Effect of the addition of nacelles and plugging of the upper 
W left nacelle on the lateral stability characteristics of a twisted and 

cambered 80' swept arrow wing. R = 4.5 x LO6; a Oo. 
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(b) M = 2.98. 

Figure 11.- Concluded. 



Figure 12.- Summary of the lateral stability characteristics of a twisted 
and cambered 80° swept arrow wing with and without nacelles. 
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(b) M = 2..98. 

Figure 12. - Concluded. 

NASA - Langley Field, Va. L-685 


